Dr. Hirst’s research aims to further our understanding of the role of epigenetic dysfunction in cancer initiation and progression and to translate this knowledge into improved health outcomes for Canadians.

International efforts to characterize genetic lesions in cancer genomes have revealed recurrent mutations in epigenetic modifiers and in some cases these can represent the sole driver. Understanding the functional implications of these mutations, their contribution to abnormal cellular differentiation and how emerging epigenetic therapeutics may counteract their effects represent the next critical steps towards translating this knowledge. In this context, Dr. Hirst is studying cancers that harbor highly recurrent gain and loss of function mutations to epigenetic modifiers, such as acute myeloid leukemia, synovial sarcoma, malignant rhabdoid tumor. His research involves the development and application of molecular and computational tools to measure epigenetic features and drive new insights into normal and pathogenic epigenetic
Selected Publications:

Visit [Google Scholar](https://scholar.google.com) for a complete list of publications.

Nguyen, L. V., Makarem, M., Carles, A., Moksa, M., Kannan, N., Pandoh, P., ... & Hirst, M. Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell stem cell 2014 February 6; 14:253-263.

Zhang, B., Zhou Y., Lin N., Lowdon, R. F., Hong C., Nagarajan, R. P., ... Hirst, M., ... & Wang, T. Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome research 2013 June 13; 23:1522-1540.

Source URL: http://wwwmsl.ubc.ca/faculty/hirst